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I. IFEItIJLCSL..RERDRI

[Phys. Rev. B 22, 1072-4 (1984)] (Reprint enclosed)

In this paper, a recent conjecture that solitons are not
"newtonian particles" is discussed. It is shown that whether
or not newtonian motion is observed will depend critically on
the definition of the soliton's center.

E~na.Luc1 n
[Phys. Rev. A 22, 396-8 (1984)] (coauthored by P.K. Shukla,
M.Y. Yu and S.N. Antani; reprint enclosed)

Sharply localized distributions of whistler waves have
been observed in the ionosphere and the solar wind. In this
paper it is demonstrated that such distributions could
possibly be explained by a modulational instability arising
from interactions with ion-cyclotron waves.

C. Thina.ad.a±a n axamipiLa ni am aJlwns± in~ta~rgza&La

[J.Math.Phys. 25, 277-81 (1984)] (Reprint enclosed)

In this paper, I discuss forced integrable systems using
the forced Toda lattice as an example. I also demonstrate
how these systems are 'almost integrable'.

D. ThaP Sioii-tnn 2.LnUb Ratpa in ttha Enr-rad Inda La±±ica-p
[J.Math.Phys. 25, 282-4 (1984)] (co-authored with D.H.
Neuberger; Reprint enclosed)

The numerical analysis of the forced Toda lattice
allowed us to demonstrate that one could quite easily predict
the soliton birth rate in this system.

E. Whitaz Sra.tAning rm Djaasl.t E.urtua1inas in Uagniatlzad
Eia.sma.s

lPhys. Fluids 22, 1169-75 (1984)] (coauthored with S.N.
Antani; reprint enclosed)

The nonlinear interactions of whistler waves with
density fluctuations in magnetized plasmas is studied. It is
found that this will be a major interaction in proposed
commercial Tokamaks, and that instead of nonlinearities
dominating, the diffusion effects would dominate with a
subsequent loss in the coherence of any such whistler beam. 0
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.. Comment on "Specific sine-Gordon soliton dynamics in the presence
of external driving forces"

D. J. Kaup
Nonlinear Studies Instine. Clarkson College of Technology, Potsdam, New York 13676

(Received 27 September 1982)

It is shown that the results presented by Reinisch and Fernandez have an alternative interpretation
where the soliton does behave as a Newtonian particle. The key features required for this alternative inter-
pretation are (i) properly defining where the center of the soliton is, and (ii) expanding the solution so as
to avoid any secular terms. When these two objectives are achieved, then the center of the soliton is
found to satisfy Newton's equation of motion for a point particle.

Recently there has been some controversy about the vali- the solution for t - + oo, whereby the general solution
dity of soliton perturbation theories and the interpretation separates into "a collection of solitons in a sea of radia-
of a soliton as a particle. This was first noted in Ko and tion." (Thus to identify or locate a soliton, one should use
Kuehl's' study of the K dV equation with time-dependent a solution valid for large-time scales, not short-time scales.)
coefficients. Their result for the position of a soliton xm, (5) The definition of the center of a soliton used by
when transformed into the notation of Kaup and Newell, 2  Reinisch and Fernandez is different from the definition
gave used in soliton perturbation theories.

Now what I want to do here is to present an alternative
-~,, _-472- F 

rinterpretation of the Reinisch and Fernandez result.4 As
dt 3-q they did, I start with the perturbed sine-Gordon equation

where 27)2 is the amplitude of the soliton and r is the u.-u,,+sinu-eR(xt)
damping. On the other hand, a soliton perturbation theory
found2  I now difffer from their procedure and instead expand u as

's 4.72 +-" u(xt) - Uo(X) +eU(1)(X,t) +.... (2)
t 37 where X is to be determined and Uo( x) is exactly the one-

where R is Kaup and Newell's position for the soliton. soliton soliton given by
These sign differences are real, and numerical results did
support Ko and Kuehl's result.3  Uo()-4tan-(e1 ) . (3)

More recently Reinisch and Fernandez have numerically X shall be defined such that no secular terms will appear in
studied4 the sine-Gordon kink under the influence of a con- (2). 1 shall define the center of the soliton to be at the
stant torque. They also found their numerical results at center of U0, which is where X -0. This also differs from
variance with the predictions of soliton perturbation

theoies-10and aveproose to xplin his y dclaing the definition of the center according to Reinisch and Fer-theories' ° and have proposed to explain this by declarng nandez, who took it to be where u,(xt) was a maximum.
the soliton to be a non-Newtonian paticle. What I propose To avoid relativistic effects and to maintain simplicity, I
is that one does not have to be that drastic and also that the saltk ,~(Eadrqietashall take x, < 0(E), and require that
Ko and Kuehl observation and the Reinisch and Fernandez
observation may have a common explanation. X -I + X1 . (4)

First, let me state some facts, then I shall give my inter-
pretation of these results. Then from (1), (2), and (4), the first-order result is

(1) The soliton or kink is not rigid and is nor a "point UoX,+fu((5)
particle."" (Therefore one must qualify to what extent one her .e t"+E 

t t

is referring to it as a "Newtonian" or a "non-Newtonian" where
particle. Should one look at the short-time or long-time L -- 8 +cos U0(x) . (6)
scales to see this?)

(2) Any "extended particle" will respond with a time de- The operator L has one zero eigenvalue, which is a bound
lay to an externally applied force.' 2 (This is also verified by state whose eigenfunction is proportional to Uox.' If I now
Reinisch and Fernandez's numerical results. To the extent demand that u(t" must not contain any secular terms in this
that the soliton is not a point particle, one could say that the (first) order, then ul" ) must be orthogonal to this bound-
soliton was non-Newtonian. In this respect, Reinisch and state eigenfunction. Thus I take
Fernandez were correct. What they observed were the com- u "( x.t) - r dk ak(t) fk( x) (7)
bined transient effects of a soliton reshaping itself" and ex- -u
periencing a time delay.) whence both x and ak are uniquely determined by

(3) The expansion used by Reinisch and Fernandez con-
tained secular terms. (The presence of secular terms limits jf(X)R (x,t)dX
the validity of their expansion to short-time scales.) Xu-4 ,. , (8)

(4) The concept of a "soliton" comes from considering=ff= X) U-x1)dX

29 1072 .1954 .. e Amr.ic.n Phyaal Sociuty .
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and which evaluates to

akt+ia4k-.ff (X)R(x.t)dX . (9) U () t)co---)- ... (16)

In the above, fb and f, are the eigenfunctions of L (Ref. 7)

and 4. - I + k2. Equations (8) and (9) are the results for a
general forcing term R(xt). As one may see from (8). the Now from (2), (1), and (16), we have
acceleration x, of the soliton is directly proportional to the
bound-state component of R (x. i), while from (9). the am- u (x. ) - U)Xt2 t _R+O00')
plitude of the continuous spectrum is driven by the kth 4Uo ±1ER2 + R2 shx I
component of R (xot).

Now, as in Ref. 4, let us take R independent of x, so that (17)
we have a constant torque being applied to the sine-Gordon
field. Also, take R -0 if t <0 and R constant for t >0. Since we have evaluated (12) by a Taylor's series expansion

Then for t > 0, (8) yields in , we may as well do the same for the soliton part, noting
that Uo, - ± 2/coshX. Whence

" *E4R , (10) u(x.t)- Uo(x) +et2R +0(t 4 ) . (18)

from which we obtain Naturally, Eq. (18) is exactly the same result as that ob-
tained in Ref. 4. However, I have obtained it via a different

X-x ±-R .t (11) definition and interpretation. I interpret Eq. (17) as a
4 2 Newtonian particle moving with a constant acceleration, and

Since the center of the soliton is at x -0, it then follows with radiation being created at a rate proportional to t2 on
that the soliton (our definition of the center at least) does short-time scales. What will be observed numerically is
behave as a Newtonian particle. 2. -5- shown in Eq. (18). As shown by Eq. (18), the buildup of

However, as was indeed pointed out in Ref. 4, such is not the above-created radiation will exactly cancel the soliton
observed. And to understand what has occurred in these nu- motion, causing the soliton to seem to hang motionless.
merical experiments, 4 we must include the effects of the One can also explain this by considering the various time
continuous spectrum. From (9), one can readily obtain 4,;  scale involved. In a Taylor series expansion as in Eq. (18),

one is implicitly considering the response of the system on a
U(I('Xt) +- -- RR J dk G(k.X)(I -cos(wt) . (12) very-short-time scale, at least faster than the time required22 for a signal to cross the width of the soliton. On such a

where short-time scale, for example, the left side of the soliton
will not know what has happened on the right side of the

G(k, X) - kcs(kX)-sin(kt)tanhc (13) soliton. Thus whatever happens on the right side cannot ef-
(l +k 2)2sinh(ik/2) fect the left side. Thus each element of the sine-Gordon

In Ref. 4, the integral in (12) is evaluated by contour in- field will respond independent& of all other elements. To
tegration and is reduced to an infinite series. Howuver, that make this clearer, consider now Eq. (1) on this short-time
infinite series is only convergent if one is outside the light scale, and in the rest frame of the soliton. Since we start

cone. Inside the light cone, one must use other techniques. with an equilibrium state, we have u, -sin u -0, at least on
For large times u t) will conveniently separate into the two this time scale, which leaves only
parts u,-ER(xt) . (19)

U1 ) L R Jfdk G(k. X) What (19) demonstrates is simply that the response of u at
x is independent of what u is at another value of x Each

+ .R dk G(kx)cos(ojt) . (14) element of uis responding like a free particle, independent
2 - of all other elements, and its response is only determined by

The first part is time independent, and corresponds to a per- the value of the forcing term at the position of that element.

manent change in the soliton's shape. The second term In other words, the concepts of solitons and radiation are

may be evaluated by stationary phase, and represents out- only of value when one is concerned with or interested in

ward traveling radiation. the intermediate or long-time behavior. On the short-time

If instead we are interested in short-time scales, then we scales, the soliton concept is of less value than the field

may expand (12) in a Taylor series, obtaining concept, as was demonstrated by Eq. (19).
I also suggest that a similar analysis of the K dV equation

u)(X,t) -L " dk +k 2)G(k.) +0(t4) , (15) may well explain Ko and Kuehl's' result. but that remains

4 ... . . . to b' s

1-
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Nonlinear scattering of whistlers by electrostatic fluctuations

P. K. Shukla and M. Y. Yu
lisiaaAZ, Theeasche Physik . Ruhw.IUnversad Bochum,

D-4630 Bochum 1. Federal Republic of Germany

S. N. Antani and D. J. Kaup
Department of Physics. Clarkson Colege of Technology,

Poisdam, New York 13676

(Received 28 October 1932; revised manuscript received 29 March 1983)

It is found that nonlinear coupling of whistler waves with ion-cyclotron fluctuations can lead to spiky
whistler electric field envelopes. Analytical results for the latter, which are solutions with discontinuous
derivatives, are liven. Possible application of our results in solar-wind plasmas is discussed.

The knowledge of nonlinear propagation of electron where no is the unperturbed density, and we have assumed
whistler waves is very essential to the understanding of w,>w( 0.-a). Note that kili£, but the slow modula-
wave phenomena in both ionosphere and space physics.' In tion is in both x and z directions. Here, 8n and u, are the
particular, nonlinear interaction of whistlers with adiabatic electron density and field aligned velocity perturbations as-
particle motion, ion-acoustic oscillations, and magnetohy- sociated with the low-frequency plasma motion. The two
drodynamic perturbations can lead to the modulational insta- are related by the electron continuity equation
bilities.2"3 The latter can give rise to self-focusing, wave to-
calization, and soliton formation.' 4  8,hn +no8,- 0 , (5)

In this paper we consider the interaction of whistlers with where, in view of the low frequency (8, << fl,), we have
electrostatic ion-cyclotron oscillations. It is found that such used the drift approximation V. - VE - ci x I O/Bo,
an interaction produces spiky whistler envelope solitions, where 0, is the slow ambipolar potential. Note that
Analytical results for the latter are given, and application to I • VE- 0, and that there are no density perturbations as-
space plasma is discussed. sociated with the whistler waves.

Consider the propagation of right-handed circularly polar- We shall limit to electrostatic low-frequency response, and
ized whistler waves in the form let the parallel phase velocity of the modulation be much

[-E( + i)exp(i C- iwt) + c.c. (1) smaller than the electron thermal velocity. The slow elec-
trons are then in equilibrium along go. From the parallel

The frequency wi and the wave number k are related by the momentum equation, one then obtains the corresponding
dispersion relation electron density perturbations3

c2k I w (2) 8,6n/no-8 2,4+F (6)a, - 1 - os9a, (2)'
where r-e*/T., 7" being the electron temperature. Here,

where cost-k,/k, k2- kj +kz; *., and 01, are the elec- F represents the low-frequency ponderomotive force due to
tron plasma and gyrofrequencies, respectively. The cold the whistler fields; it is given by3''

plasma dispersion relation given above is valid for
I,-l.I >>k,v&, w >>n, , and w>a,./(1+,jz/flz)t2 ,
where vr is the electron thermal velocity; 0, and ae, are F- Ia. , _ IEI (7)
the ion gyro and plasma frequencies, respectively. ve l61rnoT,

Nonlinear interaction of whistler waves propagating along
the external magnetic field Boi with slow background plas- Under the quasineutrality condition, the slow ion motion
ma motion gives rise to an envelope of waves governed by is given by
the nonlinear Schr6dinger equation34  8n + no IL V, +noOv. 0 (3)

i(8,+v,8)+ , (3) 8,7, 1-c 8 'I -0+ fl, ,-x; -v, ,8n/no, (9)

where v, , 2a.(0.-€.)/kf3. is the group velocity, v;-v, a- -c8,4 - n/no . (10)
x(f0,-4,)/kfl,, and T-v,(0,-2w)/2k(0.-,) are
the parallel (to No) and perpendicular group dispersions, where c,- (Te/m,)" 21 and t.- (y T,/m,)/ 2 are the ion sound
respectively, and ion thermal velocities, respectively. The effect of the

The nonlinear frequency shift & appearing in (3) is given ponderomotive force on the ions is negligible since the
by whistler waves do not involve ion motion.

Although according to these equations the ion motion is
A - ug v, ](4) linear, its nonlinear coupling to the whistler waves occurs

2 jno uJ through the ambipolar potential 4b appearing in (6). From

29 396 V1984 The Anerican Physical Society .
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(9) we get The wave equation (3) then yields V - avg, and

(8,1+ 11,2)V,,_ -C.28, I (D_- a ,,: (b -i/'apr- 8€-wOal-o ,(70)

x--vtV r 8n/fno (11) where P-atv2+T. Equation (20), which contain. a
derivative in the nonlinear term, is similar to that describing

Combining (8), (10), and (11), we find upper-hybrid solitons.b It has a localized solution given by
the relation

[8,2(8,2+ fi,2) - jV 7 - fl, v8a,1]n/lo f- tosech( (x + az - Vr)/L + (I -1/ )I/2] (21)

-c (V28,+fl2 )d , (12) where f 2-P14Q and L 2-P/28. Note that 8>0. P >0,

where V 2 V2 +8.. Eliminating b from (6) and (12), and a << I are necessary for the existence of the soliton.

we obtain Furthermore, we note that the function 8' also appears in
the argument of the hyperbolic-secant function, and that the

[8?(82+ fl,2) - c.~V 2,2 V - fl ,228?1 n/no theory breaks down if 2u,-v,. The slope of the soliton
electric field f can be shown to have a discontinuity at the
center, where the profile consists of a cusped spike.

where c.2 - (-yT, + T.)/m. Of the ive soliton parameters, namely, the amplitude t o,
Equation (13) describes four types of driven low- the speed V, the direction cosine a, the width L, and the

frequency, electrostatic oscillations. First, for 8,- 0 (adia- frequency shift 8, only two are independent. The rest are
batic response), 4 we obtain from (13) that v,- 0, and related by the conditions

a,(8n/no)-[T,/(T,+T,)]F , (14) 2p2k vgfo2 - a 2u; +T-2L 28

where F is given by (7) with 8,- 0. This modulation leads and V - avg. Here, the quantities k, us, and T are charac-
to a positive density perturbation for (a < fl. One can easi- teristics associated with the whistler carrier waves.
ly show that the usual hyperbolic-secant-profile standing en- We have demonstrated the existence of sharply peaked
velope solitons exist if (o < fl1 /4 (i.e., v; > 0). modulation of whistler waves. Such modulations originate

For 8, << IL, V << 8,, and f2-2c2.V V << 1, Eq. from the nonlinear coupling of whistler waves with back-
(13) yields the driven slow ion-acoustic oscillations, name- ground plasma motion associated with electrostatic ion-
ly,4  cyclotron waves. This is in contrast to the often-discussed

whistler modulation by ion-acoustic or magnetosonic waves,
(O,-c82)8,8n/no - -c8,2F . (15) where the resulting pulses have smooth hyperbolic-secant-

For this case, one can show that sub- as well as supersonic profile peaks. The physical reason for the discontinuous
F ohiscaoe sowthatsub- as4 wlasueoc behavior (of the derivative) of the soliton profile may be

hyperbolic-secant-profile solitons exist.a the occurrence of a marginal balance between the dispersive
For n , << 8i ansd m i pred one obtains the driven fast and nonlinear effects, in the sense that the wave-breaking

ion-acoustic waves, moving predominantly across the exter- nonlinearity is barely balanced by the wave-spreading disper-
nal magnetic field, sion. Similar behavior exists in certain problems in hydro-

In this paper, we are interested in investigating the non- dmc. Physically, the spike, profile clearly cannot ex-

linear state involving the whistlers and the ion-cyclotron *ynamics.
fluctuations. The latter satisfy 8,- 12< and 2 ist. It is expected that small collisional or thermal (Landau
Thus we obtain from (13) damping) effects will smooth out the profile at the discon-

tinuity (of the derivative) locally, but the overall peaked
(8,2+ (1,2- 7 )8,8n/no- -c, 2

a2F , (16) (spiky) shape will remain.
Discrete, sharply peaked, whistler wave packets seem to

which gives the ion-cyclotron wave response in the presence have been observed in the ionospheres and in the upstream
of the ponderomotive force. solar wind.9'" In particular, observations in the foreshock

We look for stationary solutions of the coupled set (3), region of the Earth's bow shock," as well as near inter-
(5), and (16). We let planetary shocks in the solar wind,12 indicate the existence

E- W()exp(i8) (17) of electron or ion beam related whistler turbulence, which
appears as spiky pulses of electric and magnetic field fluc-

where W and 8 are real, and f - x + az - Vt. The constants tuations. These pulses may be associated with the ion-
a and V are real, and for the present modulation a << 1. cyclotron wave modulated whistler wave packets investigat-

For localized perturbations, we require v(), 8,n (f), and ed here. The lack of quantitative data, however, prevents
W()- 0 for If I - -. One obtains from (5) and (16) us from a detailed comparison of our theory with the obser-
u - vpnI/no and vations. We shall nevertheless compare the observed pulse

amplitude with our calculations. From the data given in
S8n/no- -p?(l-2v,/v,)t . (1) Ref. 11, namely, no-10 cm .3, T.-I eV, ck/w-450,

where 912- W 2/6wnoT,, v,- V/a, and p,-c,/fl,. Coin- fe-fl./Z2r-140 Hz, and f-w/2r-56 Hz, we obtain

bining (4) and (IS), we get A- Q8j . where Ei/f - 10-1 V/m'Hz, which is rather high in comparison
with the average value 10 - 11 V2/m'Hz quoted in Ref. Ii.

Q0mjkv.( -2v, u,)p,2 • (19) The difference may be due to wave-dissipation mechanisms

07 1"2 1, I
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as well as the pulse chain behavior (the observed pulses are mas, since whistler waves (but with w fl,) are used for
not isolated as in the theory), which were precluded in our electron cyclotron resonance heating. When the power is
theory. The condition that the time scale of the modulation sufficiently high, modulations by low-frequency plasma
is of the ion-cyclotron frequency ( - 0.08 Hz here) is con- motion can become important. The ion-cyclotron modula-
sistent with the estimated (from the diagrams of Ref. 11) tion considered here would be of particular importance if
half-pulse-width of 15 sec. Unfortunately, the density fluc- simultaneous ion-cyclotron resonance heating is used to
tuations associated with the pulses do not seem to have heat the ions, since then a high level of electrostatic ion-
been recorded. According to (18), the pulses are accom- cyclotron fluctuations would be present to enhance the
panied by in-phase density humps of the order modulation.
8n/no- 10'.

Finally, we point out that our investigation may rind ap- This work was supported by the Sonderforschungsbereich
plication in the problem of radio-frequency heating of plas- 162 and the AFOSR.

'Present address: Department of Physics, Auburn University, Au- 7V. 1. Karpman, Nonlinear Waves in Dispersive Media (Pergamon,
burn. AL 36849. Oxford, 1975), p. 112.
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The forced Toda lattice: An example of an almost Integrable system
D. J. Kaup
Institute for Nonlinear Studies. Clarkson College of Technolog, Potsdam, New York 13676
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A method for solving forced integrable systems is presented. The method requires the knowledge
of at least one piece of information about the solution. Once this is known, one may then construct
the remainder of the solution. In this sense these systems are "almost integrable." The forced
semi-infinite Toda lattice is used as an example and to illustrate the method.

PACS numbers: 03.40.Kf

I. INTRODUCTION L, = [M,L ], (3)

Although the inverse scattering transform' (IST) is well which for the free system is satisfied everywhere is now saris-
established as a method for solving free integrable systems, fled "almost everywhere" instead of "everywhere". Equa-
little work has been done on forced integrable systems. By tion (3) is violated at those points where the system is being
"free" we mean those systems without some type of forcing forced. It is this Lax relation which guaranteed the integrabi-
term. Typical examples of free integrable systems would be lity of the free system in the first place. So if for the forced
the sine-Gordon equation 2  system Eq. (3) is now satisfied only almost everywhere, could

6,, - ., + sin 0 = 0, (1) we then not expect such systems to be something like "al-
most integrable"? Indeed, such is the case. As I shall demon-
strate, given the forcing terms and only a few additional

the nonlinear Schr6dinger equation pieces of information about the system, the system then be-
id, = ib. ± 2(*0)b, (2) comes completely integrable. This additional information is

with the boundary conditions of O(x-* ± oo,t) = a, where a not independent of the forcing terms and is quite dependent
is an arbitrary complex constant. 4 On the other hand, a on them. So there is a consistency problem. But once this

"forced" system would have some forcing terms which de- additional information is obtained or known, then the re-
termine much of the motion. As an example of a forced inte- mainder of the system does become completely integrable.
grable system, the driven sine-Gordon chain is where Eq. (1) The remainder of the paper will be devoted to using the
is valid for x > 0, while the value of 0 (0,t) is externally con- forced Toda lattice as an example of an almost integrable
trolled. If one drove this system such that 4 (O,t) = 21t, then system and to illustrate these above ideas. By "forced Toda
for every one unit of time a new kink would have been inject- lattice" I mean the semi-infinite Toda lattice7

ed into this sine-Gordon chain. Other examples are easily - P4a)
imagined. (> 1 ),

One will note that the above-mentioned "free integra- P. exp(Q, - Q. + expQ_ Q), (01
ble" systems are all completely solved by the IST. And this
method of solution is well known. But in general the "forced and where Q0 (and P0  Q0 ) are externally controlled. In
integrable" systems are not solvable, except in special cases other words, Q0(t ) determines how the zeroth lattice particle
wherein one may utilize some symmetry.5 Otherwise most of will move and then the motion of all other particles to the
what we know of such forced systems has been obtained by right of this particle is determined by Eq. (4). This system
numerical methods. was suggested to me by Professor Knopoffl, who along with

Ifone reflects on what happens to the scattering data in T. G. Hill" had observed a fascinatingly regular envelope
a forced integrable system, one can appreciate some of the structure developing out of an apparently chaotic system.
complexity of such systems. For example, in the above-men- (See their Fig. 2.) An example of the same is shown in my Fig.
tioned driven sine-Gordon chain, the scattering data must 1, but at a different time. What one should note is the regular
vary as some complicated function of time, simply because in envelope structure to the left, whereas as one moves to the
every new unit of time, an additional kink must appear, right the structure becomes more and more random and
which means that a new pole in the reflection coefficient has chaotic. To say the least, this is a very curious and strange
to move across the real axis up into the upper half of the behavior, and one would like to be able to understand what is
complex ;-plane (; is the eigenvalue of the scattering prob- happening here. In this case, the forcing of the zeroth parti-
lem). On the other hand, the time dependence for free inte- cle is a very simple uniform forward motion Qo(t) = -2btt,
grable systems is quite simple. The bound-state eigenvalues where b, is some negative constant. Thus the zeroth particle
are fixed in time as is also the magnitude of the reflection is being rammed into the other particles, creating a shock
coefficient. Another feature of these forced integrable sys- wave. The strange behavior is the subsequent creation of a
tems is that the Lax pair relation6  regular envelope from out of this chaotic shock wave.
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- Ithen from Eq. (4) it follows that

dt = 64.0 =a, (b. -b_ ,), (6a)
"" b, -- 2(a .  a2. ), (6b)

where b,(t) and Q0t) 2re to be specified. Equation (6) then
determines a, and b. for n>2.

Consider now the eigenvalue problem"2

•a. lV,., + aV._-, +(b. -AIV, = 0 (n>l1), (7)

where A is the eigenvalue and we shall take a, = (see Ref.
-3- 13). As shown by Case 3 one may define the scattering data

in the semi-infinite discrete case as follows. (I shall shift to
the AKNS notation, where , are the right eigenstates and

_______17_7_ _"7 0., are the left eigenstates.) Take

a 25 sa 7s IS 12s IS$ 17S A = Pz + tlz- j8)

n and assume that a. - t and b, each approach zero suffi-
FIG. 1. Plot of b, vs t in the forced Toda lattice for b, = - 1.95 at t = 64.0 ciently rapidly that the following results hold. Then the right
where - 2b, I, is the velocity of the nth particle. Note the regular envelope eigenstate may be defined by
structure to the right. 0. z-z" as n- + a, (9)

where 0z - is analytic inside the unit circle of the z-plane. I
The study of shock waves in one-dimensional lattices is define

not new. An earlier analysis by Holian and Straub'° centered (10)
on the relaxation toward thermodynamic equilibrium in the
wake of shocks. Included in their numerical analysis was the which is the second independent right eigenstate of (7).
Toda lattice. These numerical results for the Toda lattice Now define a left eigenstate by
have recently been intensively analyzed" by using local IST 6,, -(z - Iz)- '[ 0 (z)ib,, (z) - io(Z). (11)
techniques. (By "local" IST techniques it is meant that one By construction,
takes a small section of the system and analyzes it with the
IST, determining what solitons are present inside this sec- = 0, (1 2a)
tion, etc. Of course the section must be sufficiently wide so 0, = 1. (12b)
that an analysis does make sense.) This is in contrast to what Consider using Eqs. (7) and (12) to construct the solution 6,,.
I shall do here which would best be described as a "global" Clearly ',, will be at most a polynomial in A, of order n - 1.
analysis. Thus my analysis is a compliment to theirs, and Thus it follows that 6n, is analytic in A except for a finite-
many of our results are of course the same. Mainly we differ order pole at, = oo.
in emphasis. Holian, Flaschka, and McLaughlin" sought to Define13
explain the molecular-dynamics experiments. I am seeking a
more general method for determining the time evolution of S (z) = e ' = io(Z)/ 0o(z, 113)
the scattering data when an integrable system is being where 6 is the phase shift. Then the scattering data consists
forced. Only the model and the specific results are the same. of the values of 6 (z) for z on the unit circle (the continuous
The techniques developed by each of us are different, spectrum) and the poles of S(z) inside the unit circle (the

Next I shall briefly summarize the IST for the semi- bound-state spectrum). These poles are the zeros of b0(z) in-
infinite Toda lattice in Sec. II. Then in Sec. III I shall deter- side the unit circle. The bound-state part of the spectrum is
mine the time dependence of the scattering data for the specified by the value of z at the pole (z,) and value of the
forced Toda lattice. This will not be a solution of the initial- normalization constant M', which is the negative of the resi-
value problem since this solution will require a part of the due of z- 'S (z) at the pole. The constant M, is real, whence
solution before one can construct the problem. So there will M, >0.
be a consistency problem. The inverse scattering equations are obtained by con-

Nevertheless this solution is still useful, and in Sec. IV I sidering the contour integral
4shall discuss how one may use it to predict the scattering

data for all time. shall then conclude with some concluding . -0 (A) (z - /zW" -', (14)
remarks on the consistency problem. fJ2i0b0 4z)

where C is an infinitestimal circular contour CCW around
It. THE 1iST FOR THE FORCED TODA LATTICE the origin. From this and upon expanding r,, as

Following Flaschka,' 2 we define a,, and b, by (z) K. K,/,
a,, exp[ - I IQ. - Q.-1)), Sa)1), (n> 1),
b= -- - ,, _; (Sb) where x,. 1- l, one obtains the following. t3.2 First construct
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1 I - S (z) ]z, (16) is For the present, let us assume that we do know what a,
F1= .- [ S( is. and continue. To determine the time dependence of the

then for m > n I, one has scattering data, S (z), per Eq. (13) we require the time depen-
dence of O(z). From Eqs. (9) and (21) for n large, I determine

IC,, +F.,, + +,,F . =0 (17) that for the eigenstate t. (z), the constant C is
j"" C =- z-I/z). (23)

from which one may solve for c,J . Next construct K, from Define the function j) by

(K)-2 = I + F2. + K AF . (18) 0, C'; (24a)
Ji- 

1

1b

Then a, and b, may be recovered from then by (21b),

a. = .K.K. -1, (19a) o = ec' [(A - b)X -X1 (24b)

b. = (..., K,. (19b) and (21a) gives

From these equations one may construct the direct and a" +2 f2(z,: )X = 0, (25)
inverse scattering transform for the forced Toda lattice. Giv- where
en (a,,b,) for n >2, by Eqs. (7--(13) one may map these quan- a22 = 4a2- b, - (b, - A) 2. (26)
tities into the scattering data. And given the scattering data, Given D 2(2,:) and the initial values of y z,O( and y 4z,
from Eqs. ( 16H 19) one may construct the inverse scattering
transform which allows one to reconstruct the potentials one may construct the solution for F (1 z,3), and thereby the
(a, ,b,) for n 2. Clearly we may do either of these at any satting functo. From E. owverote a of constrIctsthe
time. Now the question is, if (a.,b) for n> 2 evolves accord- scattering function S (zjt). However, the value of 4a (t (is re-
ing to Eq. (6), how will the scattering data evolve? This we quired before any of this may be performed. If 4ai (t ) was

shall answer next. known then the remainder of the solution would follow. In
this sense, these forced integrable systems are "almost inte-
grable." Some piece of the solution must be provided before

I1. THE TIME DEPENDENCE OF THE SCATTERING the remainder of the solution will follow.
DATA However, if one knows something nontrivial about the

properties of 4al (t), then something nontrivial can be said
In the absence of forcing and when one has an infinite about the scattering data, and thereby something nontrivial

lattice, Flasclka'2 found that the time evolution of the igef- about the remainder of the solution. It is in this manner that
states of Eq. (7) was given by I shall seek to glean information about this forced system.

where C is an arbitrary constant. In the infinite case, the IV. THE MOLECULAR-DYNAMICS CASE
integrability condition for (7) and (20) is the infinite Toda Let us now specialize to the molecular dynamics case
lattice [Eq. (6) valid for all n]. But in the semi-infinite case,
although we expect Eq. (20) to be valid for large n, one must
carefully account for the equations near n = 0 since Eq. (6) is Q(t) 0 if t<O, (27)
only valid for n2. Equation (6)just cannot be true for n = I -2b,t if t*0,
since a, and b, are constrained. Carefully accounting for with b as a constant, - 2b, being the velocity of the zeroth
these equations near n = 0 shows that for the forced Toda particle. For this case the behavior of 4a' is quite simple"
lattice, the equivalent form of (20) is and has two characteristic forms. These are shown in Fig. 2

', = a., V., -a V. - + CV. (n>2), (21a) and Fig. 3. In Fig. 2, [ show the characteristic form of4a2 for

V = (C +A - b1)V - V0,  (21b) small velocities; in this exampleb1 = - Z.The main features
S=Vto note are the initial rise, followed by a decaying ringing,
V = (4a2 - 2b,)V1 + , - A + C). (21c) which soon decays to a constant value of approximately

We comment that Eq. (2lb) is simply Eq. (2 1a) for n = 1 2.25. The value of b, = - I is a critical value," and for
combined with Eq. (7) for n = 1. Equation (2 1c) follows upon magnitudes ofb, larger than this critical value the character-
differentiating Eq. (7) with respect to time. One may easily istic form of4a2 changes, as one can see in Fig. 3. Here where
verify that the integrability conditions for Eqs. (7) and (21) b, - - 2.0, we see that the ringing does not decay. Instead
are now Eqs. (6). 4a1 seems to asymptotically approach an oscillation with an

However, one may not uniquely determine the time amplitude about 1.0 and with an average value of about 9.0.
evolution of the scattering data from Eq. (21). Note the term In either case, the dominant feature of 4a2 is that it
a present in Eq. (21c). From Eq. (5) we have shifts from 1.0 at t = 0 up to some larger asymptotic value,

a , I exp(aQ - 0o), (22a) 2.25 for bl= - 0.5 and 9.0 for b= - 2.0. So as a first
I approximation one could replace 4a' in Eq. (26) by its

bt = - 2Q0 . (22b asymptotic average value and then proceed to solve for ,
Although we do know b, because Q(t ) is to be specified, we from Eq. (25). Of course this will not generate the exact solu-
do not know what a2 will be because Q,(t) is an unknown. tion for the scattering data. But one could expect that it -
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.S0)=Z, (30a)

r(t =0) = 4 (z - 1) + zb,. (30b)

2.6- Since b, is a constant, then Eq. (25) may easily be turned into
the integral equation

b, = -0.5 21A - b)xt)
z 2 exp[(A - big ] + (0 - 2b,z)exp[ - IA - b)t

264a2 + 2 d1t ')42(t ')sinh ((A_- bJlt' _ tq , {

where 4a, only appears in the kernel.
1 s- Now consider the analytical properties of this solution

as zl-.0. In general we would expect essential singularities
at z = 0 due to the presence of terms like e = A,. But now
consider (24a). We have

a i 2e t 4e so as (lio, = (l/Z~xel¢',  132)

where (l/z) , is known to be analytic inside the unit circle. 3

FIG. 2. A plot of 4a vs r when b, = - 0.5 showing the rapid decay of the For arbitrary values of 4a in (31), such will not be so on the
initial nnging. right-hand side. One may easily verify this by using a Taylor

series expansion about r =0 . One would also note that (32)
would contain the main features of the solution. This is in- would have the correct analytical properties only if 4a' satis-
deed so. We have already determined that this procedure fies the equations of motion, Eqs. (6), for the proper value of
works quite well for predicting the soliton birth rate.'4  b,. (I have only checked this out to second order, but from its

As a final point, [ wish to point out that there may be a form, it seems reasonable that it will be true to all orders.)
solution to the consistency problem such that given b1(t ), one This leads us to conjecture that by demanding z-'Xe'
may be able to directly determine 4a2. Let me illustrate this to be analytic inside the unit circle, the correct solution for
in the molecular-dynamics case, Eq. (27). First, I determine 4a2 (t) may be determined and obtained without having to
the initial conditions on Xr and X*. At t = 0, we have solve the equations of motion. Given b(t), Eqs. (25) and (26)

a. b. =0 (n>2), (28a) show that 4a(t) is a potential forX, whileX satisfies a Schro-
dinger-like equation on the semi-infinite interval t>0. Clear-

a, (28b) ly, 4a 2 could be mapped into the scattering data for the prob-

while b, is some nonzero value. Then solving (7) for b, gives lem given by Eq. (25). But whether or not the required

*, = e (n > 1), (29a) analytical properties ofX in Eq. (32) are sufficient to obtain
this scattering data remains to be seen.o---1 - 2blz. (29b)

So by Eq. (24) we have ACKNOWLEDGMENTS
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The soliton birth rate in the forced Toda lattice
D. J. Kaup and D. H. Neuberger
Institutefor Nonlinear Studies Clarkson College of Technology, Potsdam New York 13676

(Received 26 July 1983; accepted for publication 9 September 1983)

The soliton birth rate in the semi-infinite Toda lattice is studied. The lattice is forced by driving
the zeroth particle with a constant velocity into the remainder of the lattice. An approximate
solution for the soliton birth rate is derived and it is shown to compare quite favorably with the
actual birth rate.

PACS numbers: 03.40.Kf

In a recent paper' one of the authors (DIK) discussed A = (z + lI/z), (3)
and demonstrated how one could solve "almost integrable" and 0b, is the eigensolution where
systems, one example of which is the forced Toda lattice.
This is the semi-infinite Toda lattice2 where the equation of z" as n -- + . (4)

motion is The quantities a, and b, in Eq. (2) are related to Q, by

Q, =exp(Q. -Q._)-exp(Q. -Q.) (1) a. J-- exp[ - (Q. -Q.-)], (5a)

for n> 1. The position of the zeroth particle Qo(t) is assumed b.= - Q,, (5b)
to be driven by some external agent. And the motion of this and thus as n -- + o,
particle then drives all other particles through Eq. (1). A
simple example is a case from molecular dynamics3 where a. -- (6a)

one starts with a static lattice; then at r = 0 one forces the b, -- 0. (6b)
zeroth particle to ram into the remainder of the lattice by Note that b, is just the negative of one half of the velocity of
imposing upon it a uniform forward velocity. Thus Q0 = vot, the driven zeroth particle. Also a, cannot be defined by (Sa)
where v, is a constant. since the n = - 1 particle does not exist. Instead we may

As this zeroth particle rams into the remainder of the define it to be 1, as was shown by Case." The bound-state
lattice, a shock wave is created, the front part of which con- eigenvalues are those values ofz where Aoz) is zero."-These
sists of a collection of solitons, all with approximately the only occur when z is real and is between - I and + 1.
same velocity. Parts of this shock wave have been analyzed' As shown by Kaup,' if one defines the function X' by
using "local IST" techniques to verify that solitons are pres-
ent with approximately the same velocities. X = Ole - C, (7)

With the recently developed method for handling al- it then follows that
most integrable systems, 'it now becomes possible to accura-
tely predict what the soliton structure and spectrum of this X = (A - bl)X - Ooe (8)

shock wave is. The purpose of this paper is to predict this and that y' will satisfy
spectrum and to compare the predicted soliton spectrum
with the actual observed spectrum. As we shall see, the X +/ , -- 0, (9)
agreement between the predictions and the numerical results where
is quite good indeed. Wtzt) = 4a'(t) - (b. - A)' - 6, (101

Next we shall summarize those equations and results ,

from Ref. I which are applicable to the motion of the soliton and
spectrum. The solution of these equations requires one to C = - l/Z). (11)
know beforehand what will be the separation between the Thus if one possessed the function (v), from (8) one could
first two particles as a function of time. We approximate this T on e ossess the fnting t , fom)on culd

in areaonale annr ad otai threb anappoxiate construct Qb0z,t ) thereby obtaining the soliton spectrum (thein a reasonable manner and obtain thereby an approximate zeros of bco) as a function of time. However, before we may
solution for the motion of the bound-state (soliton) spec-. eo f0)a ucinoftm.Hwvr eoew a

soluionforthemotin o th bond-sate(soito) ~construct the solution for X, we must know 4a', which by
trum. We next numerically compute the lattice motion from 5ons 2

Eq. (1), determine what the actual spectrum is at various (Sa) is
times, and then compare results. 4a' = exp(Q0 - QI). (12)

According to Kaup,' the inverse scattering transform Although Q is given, Q, is not and requires the solution of
(IST) for the forced Toda lattice requires the solution of the the problem which we are trying to solve. For the moment
eigenvalue problem we shall simply assume that 4a2 is known, and continue.

a,. * n. i +, a. ., + (b - ) b =0 , (2) Assuming 4af(t:) to be known, then we may solve Eq. (9)

where as follows. Take a solution of (9) to be of the form
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X e ;(13) 2.-

-~s

then Eq. (9) gives

A = const/( # )1/2, (14) 2.0-

2..a2"+ A 2 (15)
w h ere . s .

ts =A/IA. (16)
The initial values forX and y follow from the initial 4 2

values for a. and b. as follows. Consider the moment just
after t = 0 where b, has reached its nonzero uniform value.
Here |.S-

a.,-- =I I> 1), (17a)

b. =0 (n>2). (17b)
We may now solve (2) for the initial value of '. We find IA-

*.tO)z In,,(8ea I 20 39 40 so so

*~(t0 (n), (ISa) t -
#oI = 0) = I - 2b, z, (18b) FIG. I.A plotof4al vstwhenb, = -0.5 showing the rapid decayof the

which by (7) and (8) give the initial values initial ringing.

SIt = O) = Z. (19a)

X(t = 0) = Az- I +bz. (19b) /uandk. Thus we take them to be zero in (15) and (24). Itonly
Matching the two possible solutions in (13) to these initial remains to specify the values of 4a' (t). To see how best to do
conditions, we determine the correct solution of X to be this consider 4a2 vs t as shown in Fig. 1, which is when

cos bi- = - 0.5, and Fig. 2 which is when b, = - 2.0. What we
A ZCos X sin 6 ,(20) observe there is that 4a2 rapidly shifts from its value of 1.0 at
S- t = 0 to a larger average value. Clearly the most dominant

where the subscripts "0" refer to initial values and we have feature is this definite shift in the average value. So we shall
taken approximate the value of 4a required in the calculation of ,

6, = 0. (21) Eq. (15), by its average value. Thus
So far no approximations have been made. From (8), the 2 (4a2) - (b, - A )2. (28)
zeros of 0, will be where From Figs. I and 2, we have

tan 00(A - b, - u)+  (1z - A - b + / )  (22) b,= -0.5, (4a)_2.25, (29a)
(,A -b, - p)ll/z- A -b, + /Ao) - o "

Defneb, =f - 2.0, (4a',)t__9.0, (29b)

Define2
4 0 = arctan[ /(l/z-A - b, + uo)] (23)

with which Eq. (22) can be reduced to 12.S

,=4o+arctan[ /$(A -b,-A)]. (24)
Now, let us approximate in the spirit of the WKB meth-

od to determine # and 00. From (1), (5),(10),(14), and (16) one
has that the initial value ofA& is

/so ma b,/2 20 (25)

Pro~vided , was not close to zero, the solution of (15) would 2

be$ Df. However, ifn 2 would be close to zero we d 2a
would have to account for the tamsp 2 + t. We do this by -.9
evaluating them for 0 smalL. Otherwise they would have no
significant effect and could be ignored. For small 40, we have b, -2.0

./ ,414 (26)

so we approximate Eq. (IS) initially by
2anI-(-i 2+J /44o  (27) .- r-T--=

o I i 20 38 40 so s
which is a cubic equation for . It has only one positive real t
root when A and b, are real. FIG. 2. A plot of4a2 vs t when b, , - 2.0 showing the asymptotic oscilla-

For the later times, we shall simply ignore the effects of tions.
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--- Actual (dashed) --- Actual (dashed)
-Prdicted (lid) 8 Predicted (solid) . 8

P -_ - 7

-b -- " ----- 0-- 7
' 6

6IO -1 -1 d -0'

Z ,
FIG. I. The soliton birh rate when b, = - 0.5 as predicted by Eq. 1 31 ) FIG. 4. The soiiton birth rate when b,= - 2.0 as predicted by E.q. { 3 1 )

Jsolid linel and as ac'tually is (dashed Miel. (solid linel and as actually is (dashed linei.

which are the only values that we shall consider here. though the general shape and Motion still quite accurately
Now reflect the actual curves. This discrepancy may arise in part

'6-- t, (30) from ignoring the oscillations in 4a2 (see Fig. 2) which do not

and q. (4) gvesseem to be decaying away. They do rapidly decay away in
and .,q (2) gvesFig. 1, and for that value of Ill, the results shown in Fig. 3

t = ( )-%td o + arctan(4 /(,A - b))]. (31I) gave excellent results.

This equation gives all possible times associated with a given In conclusion we have demonstrated that one can solve

possible value for a bound-state eigenvalue, for the soliton spectrum, and its subsequent motion, when an

A plot of these t values vs z is shown by the solid lines in integrable system is driven by forcing terms. The method
Fig. 3 for b, = -- 0.5 and in Fig. 4 for b, = - 2.0. In Fig. 3, does require having some particular information about the

these curves are easily interpreted as being the motion of the solution, so it is not a method for solving the initial-value

eigenvalues of individual solitons. The first soliton is created problem. However, the information required for finding the

at t- 0. I with an eigenvalue ofjust abovez --- - 1. (A soliton soliton spectrum need not be detailed, and we found average
with z = - I would have a zero velocity, zero amplitude, values to be adequate to reproduce at least the gross features

and an infinite width. When z is just greater than - 1, then of the curves.

these values become finite and nonzero.) This eigenvalue
moves rapidly toward the limiting value of - 0.29 at which ACKNOWLEDGMENTS
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Whistler scattering from density fluctuations in magnetized plasmas
S. N. Antani" and D. J. Kaup
Clarkson University, Potsdam New York 13676
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Scattering of a coherent whistler from random density fluctuations is treated by a perturbation
procedure. The attenuation length is calculated for scattering by a drift-wave type fluctuation
model and is simply expressed as a function of the propagation angle in the limit where the
whistler wavelength is long compared to a correlation length. For typical tokamak and space
plasmas, this scattering becomes most important at larger angles.

I. INTRODUCTION considered "slow" or lower-hybrid wave.."' Since the den-

Wave-scattering from random fluctuations in a plasma sity fluctuations also occur in tokamaks,Y" it is then essential

has been a subject of extensive investigation since fluctu- to consider whistler propagation in the presence of fluctu-ations.
ations of various sorts such as in the density, temperature, W sh

magnetic field, etc., are always present in a plasma. For in- We shall follow a perturbation procedure due to Ke -

stance, electrons in the upper atmosphere are distributed in ler to study the whistler scattering problem. An important

an irregular fashion.' Recently density fluctuations have advantage of this method is that one can evaluate the final
also een dtetegdlar hin.a Rtly ty fluc Tuaos itabe results for both the long as well as the short wavelength lim-coms esetia t inesigae nd ndrstndtheinluece its. Treating the fluctuations to be weak on a homogeneousalso been detected in a tokamak type plasma. 2.3 Thus it be- is raigtefutain ob eko ooeeu

comes essential to investigate and understand the influence background plasma, first a modified dispersion relation in
of random fluctuations on wave propagation. the presence of fluctuations will be derived. It will be seen

An early attempt to consider the effect of ionospheric that the fluctuations cause the wave refractive index to be

irregularities on wave propagation was due to Budden.4 He that the ea cat rerentie inde to be

assumed a Gaussian model for the irregularities and suggest- complex, with the real part representing the change in the

ed that the relatively few ground observations of whistlers phase velocity of the wave and an imaginary part signifying

could be explained in terms of the scattering from small irre- attenuation of the primary wave due to scattering from fluc-

gularities having a finite elongation along the geomagnetic tuations.

field. Radio wave scattering from ionospheric irregularities Keller's method was employed by Liu' 2 to study the
was considered by Simonich and Ye. s They considered a scattering of the ordinary and extraordinary waves in a mag-
"bistatic" problem in which a radio wave is sent out into the netized plasma. Satya and Schmidt 13 applied it to the prob-
upperatoperlem bywh a trair ae ssatute inal te lems of laser and Alfven-wave scattering from fluctuationsupper atmosphere by a transmitter and the scattered signal is in a plasma.
received back on earth. They could then regard the region of In the next section we shall describe the formalism used
scattering as small compared to the distance traveled by the in the ne s esal describe the r sm ueradi wae. husthe usd te siglescaterng r te ~ to derive the general dispersion relation in the presence of
raproimave.Tio toy caulse the s catter g por adthe fluctuations. Specialization to the case of a whistler will be
otrn approximation to calculate the scattered power and the the topic of Sec. III. Here we shall define an attenuation

scattering cross section as a function of the random inhomo- length for a whistler wave, which can be interpreted as a
geneitydistance over which the coherent form of the wave energy is
lower-hybrid wave from random density fluctuations using a lstanhe oveenergy the reappers ohe rentrgyis
wave kinetic formalism. Using the same formalism, Hui et lost. This wave energy then reappears as an incoherent whis-al.' reported a numerical calculation of the ray trajectory tler energy. Thus another way of describing what is occur-
modification of the electron-cyclotron wave due to the den- ring is to say that the coherence of the beam is gradually
mditfications thwabeing eaten away by the fluctuations. Next, in Sec. IV, we

in this work we shall consider the scattering ofa coher- shall evaluate the attenuation length of the coherence for the
ent whistler wave from random density fluctuations in a typical parameters of tokamak and space plasmas. Finally,

magnetized plasma. We are principally motivated by the fol- in Sec. V, we summarize the main onclusions and also make
lowing considerations: (i) Whistlers are known to travel long some pertinent remarks.
distances in the upper atmosphere being guided by the field
aligned columns of ionization.' Since the electron distribu-
tion in the upper atmosphere is known to be irregular,' whis- First we shall state the basic assumptions involved: (i)
tier propagation in the presence of these irregularities would Consider a cold, collisionless and homogeneous plasma im-
be an important study. (ii) in the supplementary radio fre- mersed in a steady magnetic field directed along the z axis.
quency heating scheme in the lower-hybrid range of frequen- (ii) In order that the perturbation expansion be applicable.
cies, it has been suggested that the use of the "fast" or whis- we shall assume that the fluctuations are small over a uni-
tler wave may have some advantages over the usually form background plasma. (iii) We shall treat the fluctuations

as quasistatic so that the frequency characterizing the fluctu-
ations may be taken to be much smaller than that of the

"Present address: UCLA Plasma Physics Group. Los Angeles, CA 90024. whistler wave. (iv) The fluctuation spectrum is chosen to be
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of a Gaussian shape for analytic simplicity. This choice of a tacitly assumes that the inverse of L exists. The justification
Gaussian shape is further motivated by the fact that the ob. of this assumption comes from the consideration that the
served spectrum can be closely approximated by a Ganus- fluctuations alter the wave refractive index, so that in their
sian-' (v) In keeping with the observations,2', we shall also presence the determinant of L is nonzero. Further, the fluc-
assume that the fluctuation spectrum is isotropic in a plane tuating part Vcan be expressed as
perpendicular to the direction of the external magnetic field V= (&AVOW (9)
(i.e., the z axis). Further, since the fluctuations are mostly
field-aligned, i.e., the density distribution is stratified along and M is the constant matrix,
the ambient magnetic field, we shall ignore their effect on the /- (K,, - 1) XiK
z component of the wave refractive index (n,). We shall also - 0 -(K., - 1) 0regazrd the spectrum as a function ofx andyv only and take the00X

correlation length Lr to be the same in these directions. (vi) 0
We shall consider the whistler frequency o to be in the low- Basically Keller's method involves the derivation of an
er-hybrid range, i.e., Di 4o4 .O with D. denoting the cy- equation for the averaged field in the presence of fluctu-
clotron frequency of species a. This is the frequency range of ations. " To derive such an equation, begin with Eq. (4) and
interest in the rf heating of thermonuclear plasmas.' Whis- write the stochastic operator .Y as follows:
tiers in this frequency range also occur in space plasmas.'4  Y = [--' = I (1 +L -'V)-'L -1'-'. (11)

Assuming time harmonic solutions, the Maxwell equa- Next, consider the binomial expansion for (I + L -V)-I,

tions can be written in the form,

VxVx =K-E, (I +L-V)'- X(-L -V)'. (12)

where the spatial variables have been normalized in units of -o

wol€ and K is the cold plasma dielectric tensor given by This requires that IL -'V I < I. Thus, one must estimate the
magnitude of this last quantity to ensure that the binomial

-5Kx 0 expansion as such will be applicable in a given problem. For
K = K, 0 , (2) now, it will be assumed that IL -'V I is sufficiently small to

0 K1. permit dropping of terms up to and higher than (L -IV) 3 .
This will be a posteriorijustified later in this paper.

where the elements K 1 , K., and K , are defined as follows: Next, rewrite Eq. (4) using Eqs. ( 11) and (12) and consid-

K, = I --a,0/W1 + .. /17 ., (3a) er the ensemble average of the resulting equation, i.e.,

K =aM [L + (v) - (VL -'V) + (vL -'(vE

Here w., is the plasma frequency of species a. [

If there were no fluctuations, then we know that Eq. (1) + O(L -I V) 3] (E) = 0, (13)
wouldjust provide us with the usual linear description o'the where the angle brackets indicate an ensemble average. If
waves. Because of the presence of the density fluctuations, ( V) = 0, and the terms of order (L - IV)

3 and higher are ig-
however, the density-dependent parts of the cold plasma di- nored in the above equation, then one obtains Keller's equa-
electric tensor K are modified. Then one can expresses Eq. (1) tion,
in the form ofa general stochastic equation (i.e., a partial L (E) = (VL -'V)(E). (14)
differential equation with random coefficients), The inverse operatorL - ', or the Green's function, is defined

.VE M 0, (4) such that,

where .X is the stochastic differential operator (matrix), and LG (rr') - (r - y'), (15)
Eis a random wave field. It is convenient to separate out the where G (r,r') is the usual Green's function or in this caw a
part due to fluctuations from the general Maxwell operato Green's funti on thisfcaseia

Y in the basic equation (4). This is done simply by writing Fou matrix. We may also write down the followingthe dielectric tensor elements formally as, Fourer representation for Green's matrix G (r,r'), obtained
the dielectric tens e s f -s. by simply taking the Fourier transform of Eq. (15):K, -K14 + (KLn - I XMnNo), 15) 1 0 'L

K, -K.9(I +BiIN), (6) G(", lM +'(n) (16)
Kn - Io(I + n/No), (7) where, Z (n) represents the transposed matrix of cofactors of

where the quantity (&/Ne} iars due to the density fluctu- L and IL (n)l is the determinant of L. In terms of G, L - can
adorn and the quantitites with zero subscript are the unper- be expressed as an integral operator,
turbed pars evaluated at the ambient plasma density. L 'V= f G (rr')V(r'). (17)

With these developments, we can split Eq. (4) as follows: L

.Er m(L + V)E-L(! +L - IV)E - 0. (8) Consequently, Eq. (14) becomes

Here, L represet the nonrandom part of the operator, L ) d (
while Vstands for the fluctuating pert. The above equation L (E) - ( d V(r)G(r,r')V(r')(E(r')). (181
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From Eq. (18) one can readily derive the dispersion rela- IE, I or IE, I in the frequency range of interest." Then we can
tion using the standard Fourier technique." The result can approximate the 3 x 3 matrix L to the following 2 x 2 matrix
be expressed as follows:

detK -- n - - in - a')n 0. +Ln 2 1  2 ni cos 1

(19) 
121)

In Eq. (19), we have defined a two-point correlation function The corresponding matrix M is

n - n') such that Air- ( K' -( 1 ) X. iK(2 2

(5n(r) n!r2' = oa(r - r'), &0iK - (K, 0 -01) (22)
No No

i.e., the medium is statistically homogeneous. We could We note from Eq. (21) that the whistler dispersion relation
solve Eq. (19) for different forms of the correlation spectrum follows from the solution to IL (n)I = 0, i.e.,
such as Gaussian, exponential, Lorentzian, etc. As men- n10 K'/(n' - K,0 ) - (n - K 0 )
tioned in assumption (iv) at the beginning of this section, we

shall illustrate the calculations for a Gaussian spectrum. =,K' In' - n', if n2),Ko. (23)
Thus take To evaluate the integral in Eq. (19), we choose a coordi-

oln - a') = er272 exp( In, - n' 172/216(n, - n;), (20) nate system such that ., = n2i, and let 6 be the scattering

where n, = k, c/wo is the perpendicular component of the angle. Then the exponent in Eq. (201 can be written,

propagation vector and7 -= wo/LT/c is the normalized cor- n -ni =n + n 2 - 2nn, cos &. (24)
relation length. Further, e = ((6n/no)2) "2 is the measure of Also, dn' = dn' dn,'dn = n, dn' dn' dt. With these preli-
the strength of the fluctuations. Note that if e = 0, i.e., if minaries we can evaluate the n,-integral in Eq. (19) by noting
there were no fluctuations, the solution to Eq. (19) would that the integrand is singular at the roots of IL (n')[ = 0, on
yield the usual dispersion relations of the characteristic the real axis. For a forward propagating incident wave, the
modes. appropriate contour passes an infinitesimal distance below

the pole. Then the imaginary contribution can be simply
Ill. ANALYSIS OF THE GENERAL DISPERSION found by using the Cauchy principal value formula. The in-
EQUATION tegral over n; is trivial due to the delta function. Finally, for

First, 1-e remark that Eq. (19) contains two cold plasma the angle integration we use the integral representation of
modes. One of these is the "slow" or lower-hybrid mode and the modified Bessel functions."5 After evaluating the inte-
the other one is the "fast" or the whistler mode. Ourobject is grals for each matrix element in Eq. 119) and some algebra,
to focus on the latter mode. To this end, we need only to we can write the expressions for the real and imaginary parts
recall that the whistler mode polarization is such that E, I of the complex refractive index n, in the following compact
-IE, I or )E, 1, i.e., we can neglect IE Icompared with either forms:

Re f ) = - 2 - K )( 
-1

1 2  1 '
10 1_+ 1112")'+ MxI 1 I + (25)

(n, - .o) (n - KKo)2

f21j 1, 2 1n2 K 0) I13(K2 _ 11122)] _

- Im(n') (122+ - o+ - + , ) + n . (26)
(2(n.2 - K 0 )2  nT 76-

In Eqs. (25) and (26) the quantities 1j, arise due to the fluctu- Fo(s) =o(n2)t - £,

ations and are defned in the following relations: F.(s) = l,(s2)s- 2e - £2

I,, = A (aFo(s) + #F,(s)), (27) A = {/1/2(e),

112 1-21 and 10 and 1, are the modified Bessel functions' order zero
AF4s)K.O(n, - 1)[K 2 + -- and one, respectively. Their argument is s2 = n" 7 2 n,, be-

2 .-l _ K) ing the unperturbed perpendicular refractive index given by
2 (n- K1o )2 ' the linear dispersion relation (23), and 7 was defined just be-

(28) low Eq. (20). We have also defined

'22, (a'F(s) -6F,s)), (29) K 2 (n - 1)23a = 0 ., )230)
where (n. - K o)2
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'- [K +(n. - Ko)(Ko - 1)2 TABLE I. Typical plasmaparameters.-- (31)
{n(2 --( 3)  Ionosphere Pasmasphere

K- 2- Ko -, K - -_ K12)] Parameters Tokamak (F layerl (4 earth radii

(n- - K 0 )
2  

(32) Whistler
frequency

Naturally one may note from the relations (25) and (26) that (odrad sc- ' 5 to' 5 x 1o' 5 xo0
in the absence of fluctuations, the Jj's vanish giving Electron
Re(n) = njo and Im(n )= 0 as expected. density

Equation (25) expresses the change in the real part of the N.Vcm ') 2X 10" 10 1W9

refractive index due to the fluctuations. This in turn means Magnetic
that the wave velocity experiences only second-order field.

changes due to density perturbations. On the other hand, Eq. B. {Gaussl 2x XO 4.8 x 0-' 5 X0-'

(26) says that the primary wave is being attenuated by the Electron

presence of the fluctuations as the wave energy scatters off temp.

them and is a first-order change. One can define the attenu- T
Ion

ation length as follows: temp.

1. =c/[2olm(n±)]. (33) T,(ev 200 3 , lo-: I

This is the distance over which the coherent energy from the
primary wave is lost to the fluctuating components.

Before discussing applications of the basic results of this s2 is such that it satisfies the condition !L - 'V I. More on
section, namely Eqs. (25) and (26), let us consider two limit- this will be said later.
ing forms of these equations. These correspond to the small We shall now discuss the implications of these results in
and large argument limits of the modified Bessel functions.'5  the next section.

(i) s2, l, or the long wavelength limit: In this case we can
use the small argument expansions of the Bessel functions. "5 IV. APPLICATIONS
We thus have, Fo(s) a 1 and F(s) an 1/2. We shall find that for To discuss the implications of the results of the last sec-
most applications we have in mind, the dielectric tensor ele- tion, let us begin by listing the typical plasma parameters of
ment K.,, > I and that K,,, >K,. Further, it can be shown interest in Table I. A glance at Eqs. (25) and f26) reveal that
that nI = K,,o cos 00, where 00 is the propagation angle rela- the knowledge of the dielectric tensor elements K., and Ko
tive to the background magnetic field. Using this fact and is also required. The estimates of these in the frequency
retaining only the dominant contributions, these arguments range of interest are given in Table I.
simplify Eqs. (25) and (26) as follows: For the subsequent discussion it will be helpful to recall

Re(ni) = n + 0(A 2), (34) from the whistler propagation theorys that in the chosen
S( + 4 os 0o + os40 frequency regime, the whistler propagation angles can have

Im(n ) 2 Co -0 + 0 (A 2). (35) a wide range of values with the upper bound determined by
limit: the condition that the refractive index remain real. On the

(is1, or the geometric optics (short wavelength) imit: other hand, the group velocity (ray) direction remains within
In this case, the random inhomogeneity scale length is large a maximum of 19.5 deg relative to the background magnetic
compared to the whistler wavelength. Thus we can use the field. In what follows we shall examine the behavior of the
asymptotic forms of the Bessel functions," attenuation length as a function of the propagation angle of a

___ l\whistler wave.
Is 2) (2), The next task is to have the estimates of the fluctuation

where v -0,1. Then we have level e and the correlation length LT. For this purpose we
need to invoke a suitable model. We shall choose a model

I ls= deduced from observations--' according to which the fluctu-

F) 2¢i-e ,  s 2 2irs2) 2"  ations are caused by drift-wave type turbulence. Drift waves
In this case we find are the characteristic modes of an inhomogeneous plasma.

The extremely low-frequency (ELF) electric field fluctu-
(ations observed near the plasmapause (boundary of the plas-In ~ ~. ~--Aom o o whichohe f-uI)

In h2 =2(2=)1,/2 cos2 06 " (37)

122 - [A /(22)1r ) 2 1(a' - # /s 2). (38) TABLE It. Estimates odielecti tensor elements in LH range.

With these, Eqs. (25) and (26) become Ionosphere Plasmasphere
Element Tokamak iF layeri J4 earth radiiIRe(nzA) ,,,nno + 0(A 2), (9 K, .10. ×1 7. 0

Im(n') = [AK' /(2=)'1 2 Cos2 Oo] + 0(, 2). (40) K,o 0.12 .1 3s

It should be kept in mind that this limit is meaningful only if
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TABLE Ill. Estimates ofe and .r for drift-wave model.

8000
Ionosphere Plasmasphere

Parameter Tokamak (F layer) (4 earth radii)

L. cm 10 10 6.4x 10' 000
Lr cm 7.2X 10' 1.6x 10z  2 x 10

e 7.3 x10- 3  1.6X 10 -' 3.1X x 0-4

" ' " ,t00

masphere) region can be explained in terms of the drift insta-
bility. 6 In the equatorial F region of the ionosphere, drift 2000

waves presumably dominate for wavelengths A 5 100 m.1
Thus adopting this drift.wave model we can assume2"3  0

the following empirical scaling: 0 20 40 60 80 100

Lr-Pi,  (41) (de.)

• L,/L., (42) FIG. 1. Normalized attenuation length versus angle Itokamak plasmal.

where p, = ,,/J2 , (v,, is the ion thermal speed) is the ion
gyroradius and L, is the scale length of the regular density approximate Eq. (43). In Fig. 2 we have plotted the normal-
gradient. For the present discussion, we have L. >LT. Table ized attenuation length (4, = wolo /c) as a function of the
III presents estimates ofe and L T for the chosen parameters. propagation angle 00.

We notice from Fig. 2 that 1. decreases with the in-
A. Case 1. Tokamak plasma crease of 00. For the model being considered, 1 is of order

First we note that in order for the plasma interior to be 10' km.
accessible to the externally launched if wave, the parallel-

refractive index is limited to a rather narrow spectrum.9  C. Case 3. The plasmapause region
Typically, 1.3 < n. < 3. Now for the whistler wave, we have The drift waves presumably dominate in this region Io-
n = Kxo cos 00 so that the accessible n, values correspond cated at about 4 earth radii. Thus we can again apply the

to the propagation angle range of 75.6-87.3 deg for the K,o fluctuation model being considered. Using the L7. values
value appearing in Table 1I. Estimating the perpendicular from Table III and knowing n~o from the dispersion rela-

refractive index no from the whistler dispersion relation for tion, we find that the long wavelength limit is again ade-
the allowed n. values and taking the value for the correlation quate. Thus making use of Eq. (43), we find that the behavior
length L- from Table III, we find that s2 = (n o7)2 < 1. Thus, of . vs 0o is qualitatively the same as in ionosphere, but here
we use the appropriate limiting forms of the real and imagi- 1o is of order 10' km. Comparison of this value with the
nary parts of the refractive index given by Eqs. (34) and (35), correlation length and the scale length of the regular density
respectively. To the leading order, we see that the real part of gradient given in Table III shows that is larger than both
the refractive index is unchanged, while the imaginary part these lengths, Within the fluctuation model being consid-
can be used in the definition of the attenuation length (Eq. ered, we would expect then that the loss of coherence of a
(33)] to get

(2 1)(4

7r W" ..
4

X(1 COS 0 + o )01' /2 '  (43)
(1 + 4cos' 0 + coe ) (43) Tokamak Plasma

Equation (43) makes the 0 dependence of the attenuation 3

length explicit. Figure 1 shows the plot of the normalized
attenuation length (4,/a), a being the minor radius of the
tokamak. We notice from this plot that the ratio (I. la) drops 2
as a increases in the chosen range. This indicates increased (4-)
scattering from the density fluctuations and the consequent
loss of coherence of the primary whistler wave.

. Case Z lMMlbpIl (F4myw) plasm --- Ac*cssible Range.

Consider a typical whistler propagating in the F region 7 76 78 00 82 d .* 88
of the ionosphere. Calculating nfo from the linear dispersion B t,.

relation for different values of the propagation angles eo and
picking the Lr value from Table III under the ionosphere
column, we apan And that t2 4 I, thus allowing the use of the FIG. 2. Attenuation length veun angle tionosphere).
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whistler wave due to scattering from fluctuations in the plas- while Q is the pure imaginary loss term due to attenuation.
mapause region to be insignificant. Equation (44) describes the linear spatial evolution of the

wave field taking account of the attenuation due to scatter-
V. CONCLUSIONS AND REMARKS ing. This equation is reminiscent of the neutron diffusion

In this paper we have considered the scattering of a equation in a nuclear reactor"' where it describes the slowing

whistler wave from random density fluctuations in a magne- down and diffusion of neutrons in a moderator with the loss
tized plasma. We derived a modified dispersion relation of term signifying the absorption. In the present discussion no
the wave by using Keller's method assuming the randomness diffusion occurs in the limit considered, but only pure at-

to be small compared to the nonrandomness. Although we tenuation of the primary whistler occurs as it scatters off the

discussed only the case of a Gaussian correlation spectrum, density fluctuations.
other forms could be readily included. From what has been said thus far, we only know that

The expression for the attenuation length was simpli- some of the coherent wave energy lost due to scattering gets
fied and was examined for the scattering from short wave- transformed into the incoherent form. It might be of interest
length fluctuations. The results, in particular, showed that to ask how does one calculate this incoherent part of the
scattering becomes important as the propagation angle in- intensity. For this purpose one would have to reconsider the
creases. We should remark here that the model used to esti- basic equations (4) and (14), noting that E in (4) is the total
mate the correlation length and the level of fluctuations is field and (E ) occurring in Eq. ) 14) is the same as the coherent
not expected to be always valid. In particular, quite large field. Then writing E = E, + E,, and taking the difference
fluctuation levels (about 30% or more) have been reported in of these equations, one gets the equation for the incoherent
the Alcator tokamak.2 When the fluctuations become this field. It is this latter equation that one must solve to find the
strong, the perturbation method used here may of course be incoherent part of the field." Note that in the model being
questioned. However, these results may still be used to deve- considered the energy in the fluctuating components would
lope a qualitative understanding. Nevertheless, for any de- remain in the wave field only. Its transfer to the particles
tailed or rigorous analysis, there is definitely a need for some could be predicted not from the present model but from a
techniques designed to handle strong fluctuations. model that would include the appropriate wave-particle

Also, at the present time it is not clear how to predict, in coupling. Thus within the present model, imagining the pri-

a reliable manner, the fluctuation levels in the future reactor mary whistler as a radiating antenna, one could say that as

size devices. Consider, for example, a reactor size D-T plas- the wave propagates in the presence of fluctuations, it would

ma device with fluctuation level of 1%, minor radius = 270 radiate incoherent waves at the same frequency but different

cm, No = 10' 4 cm - 3 , B. = 32 kG, n. = 10, T = 8 keV, harmonics of the wavenumbers. This radiated wave energy
cm , w e =would be removed from the main whistler and would per.o0 = fi -wh, whereLh = o(1 + ,J )- is the lower vade the rest of the plasma in a turbulent form.
hybrid frequency. For this case, s- = 5.6 and reading the Finally, consider the question of the range of validity of
Bessel function values from the table,'5 we find that the ratio Keller's method. As has been previously noted, one must
(I./a) is of order 10-', indicating severe attenuation due to estimate the magnitude of the quantity ;L - V for this pur-
scattering before the wave has a chance to penetrate even one pose. Now L - 'is some function of the wave refractive index
percent of the distance to the center. This essentially stems modified by the fluctuations (i.e., if n is the effective index bf
from the large size of the device. We also remark that fluctu. refraction with n = no + n', where no is the unperturbed val-
ations of other kinds, such as those in the magnetic field, also ue and n' is the small perturbed part introduced by the fluc-
occur in tokamaks and these need to be included in a more tuations). Then expanding L , one finds to the leading or-
complete theory. But these calculations do demonstrate the derthatL -is of order(Im n,/n,). Now the fluctuating part
importance of scattering from random density fluctuations. V is of order e, where e denotes the strength of the fluctu-

As one can note, the attenuation length is obtained from ations. Thus one has !L - 'VIto be of order (Im n, /n, )-. For
the modified dispersion relation of the wave in the presence the whistler case, from the matrix (21) one can show that
of the fluctuations and it does not carry any information on IL -'VI goes like (selK '., so that the condition : L - V < I
the evolution of the wave field itself. To gain an insight into becomes
this question of how the field actually evolves in the presence

of fluctuations, one must consider the evolution equation for s<1/eKX'o- (45)

the field. Start for this purpose from the equation for the This sets a limit to the value of the parameter s up to which
averaged field given in Eq. (14) and perform the standard the binomial expansion (12) could be safely applied. Taking
multiple scale analysis on this equation.' 7 As a result one the typical K.0 values listed in Table II and the values of the
obtains the following linear equation: fluctuation level e as given in Table 111, we find that Keller's

method is applicable for s values ranging below about 10-
100.

This equation assumes that the parallel refractive index of
the wave is not changed due to the fluctuations. Further, the ACKNOWLEDGMENTS
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